Журнал прикладной химии. 2019. Т. 92. Вып. 12

УДК 621.793:621.78:544.023

ТЕРМИЧЕСКАЯ ТРАНСФОРМАЦИЯ ПОВЕРХНОСТИ Mn-, W-СОДЕРЖАЩИХ ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКИХ ОКСИДНЫХ ПОКРЫТИЙ НА ТИТАНЕ

© К. Н. Килин¹, В. С. Руднев^{1,2*}, И. В. Лукиянчук¹, М. С. Васильева^{1,2}, Т. А. Кайдалова¹

¹ Институт химии Дальневосточного отделения РАН,
690022, г. Владивосток, пр. 100-летия Владивостока, д. 159
² Дальневосточный федеральный университет,
690091, Приморский край, г. Владивосток, ул. Суханова, д. 8
* E-mail: rudnevvs@ich.dvo.ru

Поступила в Редакцию 29 октября 2018 г. После доработки 27 сентября 2019 г. Принята к публикации 27 сентября 2019 г.

Изучено термическое поведение поверхности покрытий, сформированных на титановых образцах методом плазменно-электролитического оксидирования (ПЭО) в фосфатно-боратно-вольфраматном электролите, содержащем ацетат марганца в качестве прекурсора. Показано, что высокотемпературный отжиг на воздухе является инструментом для направленного получения ансамблей нано- и микрокристаллов определенного состава и геометрии на поверхности образцов с многокомпонентными ПЭО-покрытиями.

Ключевые слова: титан; плазменно-электролитическое оксидирование; отжиг; архитектура поверхности; вольфрамат марганца DOI: 10.1134/S0044461819120065

Плазменно-электролитическое оксидирование (ПЭО) — формирование оксидных слоев на металлах и сплавах в электролитах действием электрических искровых и (или) микродуговых разрядов [1]. Особенности процесса позволяют вводить в состав растущих покрытий компоненты электролита. В зависимости от состава и строения ПЭО-покрытия на алюминии, титане, магнии и их сплавах применяют в качестве защитных [1] и биоинертных [2]. Исследуют применение метода ПЭО для получения материалов ПЭО-слой/металл с определенными магнитными [3], каталитическими [4] и сенсорными свойствами [5].

Функциональные свойства ПЭО-покрытий зависят от разных факторов, в том числе от состава и организации их поверхности. Поэтому установление приемов и закономерностей, позволяющих направленно изменять состав и архитектуру поверхности ПЭОпокрытий на нано- и микроуровне, весьма актуально.

Недавно показано, что отжиг на воздухе титановых образцов с ПЭО-покрытиями многокомпонент-

ного состава может приводить к образованию на их поверхности ансамблей нано- и микрокристаллов [6, 7]. Согласно [6], отжиг при 850°С в течение 1 ч ПЭО-покрытий, сформированных на титане в электролите $Na_3PO_4 + Ni(CH_3COO)_2 + Co(CH_3COO)_2$, сопровождается образованием ансамблей нановискеров (Ni_{1-x}Co_x)₅TiO₇ на их поверхности. Полученные материалы активны в окислении СО в СО2 при температурах выше 200°С. По данным [7], в результате отжига на воздухе при 850°С в течение 10-240 мин нанопластины MnWO₄ заполняют всю поверхность ПЭО-покрытий, полученных на титане в электролите $Na_3PO_4 + Na_2B_4O_7 + Na_2WO_4 + Mn(CH_3COOH)_2$. При этом образцы демонстрируют фотокаталитическую активность в разложении метиленового голубого в водном растворе при облучении светом с длиной волны $\lambda < 400$ нм. В обоих случаях [6, 7] отжиг образцов при промежуточных температурах не проводили.

Цель настоящей работы — изучение влияния окислительного отжига в широком интервале температур (200-850°С) на состав и архитектуру поверхности Mn-, W-содержащих ПЭО-покрытий на титане на микро- и наноуровне.

Экспериментальная часть

ПЭО-слои формировали на титановых пластинах сплава титана ВТ1-0 (содержание Ті выше 99.6%) размером 2 × 2 см, толщиной 1 мм. Перед оксидированием для стандартизации поверхности образцы химически полировали до зеркального блеска (8–9-й класс чистоты) в смеси HF:HNO₃ = 1:3 (по объему) при 70°C. Затем образцы промывали дистиллированной водой и сушили при 70°C на воздухе.

Для получения Мп-, W-содержащих ПЭО-слоев использовали тот же подход, что и в [8] при получении покрытий с каталитическими или магнитными характеристиками. Покрытия формировали в водном электролите, содержащем (моль·л⁻¹): 0.066Na₃PO₄ + + 0.034Na₂B₄O₇ + 0.006Na₂WO₄ + 0.1Mn(CH₃COO)₂ (PBWMn-электролит), — в гальваностатическом режиме при анодной поляризации с эффективной плотностью тока *i* = 0.1 А·см⁻² в течение 10 мин. Источник тока, устройство ячейки для формирования покрытий аналогичны описанным в [8]. После анодирования образцы промывали проточной водопроводной водой, ополаскивали дистиллированной, высушивали в сушильном шкафу при ~70°С.

Полученные образцы с ПЭО-покрытиями отжигали в муфельной печи на воздухе при температурах 200, 350, 500, 700 или 850°С на протяжении 4 ч. Каждый раз отжигали новую партию образцов. Их помещали в холодную печь. После достижения и стабилизации нужной температуры образцы выдерживали в печи 4 ч. Образцы вынимали из печи, остывшей до комнатной температуры.

Толщину покрытий определяли с помощью вихретокового толщиномера ВТ 201 (Россия) как среднее значение из не менее чем 25 измерений на обеих сторонах образца. Рентгенограммы образцов с покрытиями получали на рентгеновском дифрактометре D8 ADVANCE (Германия) в Си_{Ка}-излучении по стандартной методике. При выполнении рентгенофазового анализа (РФА) использовали программу поиска EVA с банком данных PDF-2. Морфологию и элементный состав поверхности изучали с помощью сканирующего электронного микроскопа (СЭМ) высокого разрешения Hitachi S5500 (Япония) с энергодисперсионным спектрометром UltraDry (ThermaScientific, USA). Перед исследованиями на образцы напыляли золото. Используя энергодисперсионную приставку, исследовали как усредненный состав поверхности при сканировании площадок размерами ~60 × 80 мкм, так и состав характерных образований, фокусируя анализирующий луч на площадках меньших размеров (от $\sim 50 \times 50$ нм и выше).

Принципиальных изменений в фазовом составе покрытий до температуры отжига 500°С не наблюдается (рис. 1). На рентгенограммах имеются пики, соответствующие оксиду титана в модификации анатаз. Отжиг при температуре 700°С приводит к образованию в составе покрытий кристаллических фаз оксида титана в модификации рутил и вольфрамата марганца MnWO4. После отжига при 850°С в составе покрытий наряду с рутилом определяются кристаллические фазы, которые можно отнести как к Na₂Mn₂Ti₆O₁₆, так и к Na_{0.23}TiO₂. Кристаллический MnWO4 в этом случае не обнаружен. Таким образом, согласно полученным данным покрытия имеют разный фазовый состав после отжига на воздухе при температурах до 500, 700 и 850°С.

Рис. 1. Влияние температуры отжига на фазовый состав покрытий.

a — образец до отжига; температура отжига (°С): *б* — 200, *в* — 350, *г* — 500, *д* — 700, *e* — 850. Обозначения кристаллических фаз: *I* — Ti, *II* — TiO₂(a), *III* — TiO₂(p), *IV* — MnWO₄, *V* — Na₂Mn₂Ti₆O₁₆, *VI* — Na_{0.23}TiO₂.

Рис. 2. Влияние температуры отжига на толщину покрытий.

Подобным образом от температуры отжига зависит толщина покрытий (рис. 2). До 500°С толщина покрытий не изменяется. Выше температуры отжига 700°С происходит ее рост. Рост толщины связан с окислением титановой основы вследствие высокотемпературной диффузии кислорода [9].

Электронно-микроскопические исследования поверхности показали, что после отжига при температурах до 500°С поверхность покрытий по составу и морфологии идентична (см. таблицу, рис. 3). После отжига при 700 и 850°С на поверхности покрытий присутствуют нано- и микрокристаллы (рис. 3, 4), по форме напоминающие прямые правильные призмы. Для образцов, отожженных при 700°С, сечением кристаллов является ромб (рис. 4, *в*), характерные размеры боковых граней — длина 0.25–1.5 мкм, ширина — 50–500 нм. Для образцов, отожженных при 850°С, сечением кристаллов является шестиугольник (рис. 4, *е*), длина и ширина боковых граней составляют 140–850 нм и 50–200 нм соответственно.

В таблице представлены данные по среднему элементному составу поверхности и кристаллов после отжига при 700 и 850°С. Наличие углерода в составе поверхностного слоя и кристаллов может быть связано как со встраиванием его из электролита (ацетат-ионы), так и с загрязнением поверхности. Поверхность образцов, отожженных при 700 и 850°С, состоит из участков, занятых кристаллами и свободных от них. Поэтому в этом случае содержание титана заметно выше, а концентрации элементов электролита ниже, чем в составе кристаллов.

В обоих случаях состав кристаллов согласуется с данными рентгенофазового анализа (рис. 1). В составе кристаллов на поверхности образцов, отожженных при 700°С, присутствуют в заметных количествах марганец и вольфрам. РФА показывает наличие в составе покрытий вольфрамата марганца. Логично

Рис. 3. СЭМ-изображения поверхности покрытий после отжига при 350 (a), 500 (б), 700 (в) и 850°С (г).

Рис. 4. СЭМ-изображения поверхности покрытий после отжига при 700 (*a–в*) и 850°С (*z–е*).

<i>T</i> , °C	Объект	Элементный состав, ат%						
		С	0	Na	Р	Ti	Mn	W
Исходное покрытие	Поверхность	18.5	50.6	_	0.1	16.5	12.8	1.5
350	Поверхность	15.0	55.9	1.5	1.7	17.7	6.3	1.9
500	Поверхность	12.4	56.2	2.1	2.0	19.6	5.9	1.8
700	Поверхность	19.9	48.6	0.2	0.6	18.2	8.2	4.3
	Кристаллиты	22.6	49.3		0.1	4.3	15.5	8.2
850	Поверхность	3.0	55.2	4.5		27.7	9.5	0.1
	Кристаллиты	6.2	55.0	5.4		12.6	20.6	0.2

Влияние температуры отжига на элементный состав покрытий и кристаллитов

предположить, что состав микро- и нанокристаллов — MnWO₄.

В составе кристаллов, образовавшихся на поверхности образцов после отжига при 850°С, отсутствует вольфрам, но содержатся заметные количества марганца, титана и натрия. Учитывая данные РФА (рис. 1), можно предположить, что состав микро- и нанокристаллов в этом случае — Na₂Mn₂Ti₆O₁₆.

Термостимулированный рост кристаллов на поверхности образцов, очевидно, связан с массопереносом вследствие высокотемпературных диффузионных процессов. Согласно [7], рост кристаллов MnWO₄ в результате отжига при 850°С обусловлен термодиффузией компонентов электролита, аккумулированных в пористой матрице слоя TiO₂, а также наличием Мп- и W-содержащих зародышей на поверхности исходного ПЭО-покрытия. При этом первоначально кристаллы растут в порах и окрестностях пор. По-видимому, аналогичный механизм реализуется и в нашем случае – кристаллы преимущественно концентрируются вокруг пор (рис. 4, δ , ∂). В то же время нельзя исключить влияние на рост кристаллов диффузии титана на поверхность и кислорода внутрь покрытий, о чем свидетельствует рост их толщины (рис. 2). В работе [9] наряду с окислением титановой основы вследствие диффузии кислорода наблюдали одновременный выход титана на поверхность с образованием кристаллов рутила, первоначально в области пор. При этом резко возрастала толщина покрытий, что наблюдается и в нашем случае.

Согласно полученным данным, состав кристаллов зависит от температуры отжига первоначально сформированных образцов. Кристаллы, близкие по составу к MnWO₄, образуются в результате отжига при 700°С. Кристаллы, образовавшиеся после отжига при 850°С, не содержат вольфрама, но содержат натрий. Их вероятный состав — Na₂Mn₂Ti₆O₁₆. Отсутствие вольфрама на поверхности после отжига исходных образцов при 850°С можно объяснить разложением аккумулированного в порах Na₂WO₄ и сублимацией WO₃. Известно, что оксиды вольфрама возгоняются при температурах выше 800°С [10]. Образование Na₂Mn₂Ti₆O₁₆, очевидно, связано с диффузией натрия, марганца и титана из пор на поверхность ПЭОпокрытий.

Сравнение результатов, полученных в настоящей работе и в [7], показывает, что между ними есть как сходство, так и различие. Общее — образование нано- и микрокристаллов MnWO₄ на поверхности. Однако в наших экспериментах кристаллы MnWO₄ появлялись после отжига при 700°С, а не при 850°С. В последнем случае мы не обнаружили вольфрама в

поверхностном слое, а вероятный состав кристаллов на поверхности — Na₂Mn₂Ti₆O₁₆. Различие полученных данных может быть связано с различиями в концентрациях компонентов использованных электролитов, режимах формирования ПЭО-покрытий, а также в условиях отжига образцов на воздухе.

Выводы

Таким образом, при окислительном отжиге при температурах до 500°С состав и архитектура поверхности Mn- и W-содержащих ПЭО-покрытий на титане неизменны. После отжига при температурах 700 и 850°С на поверхности установлено наличие правильно ограненных микро- и нанокристаллов. Кристаллы, образованные после отжига при 700°С, — правильные четырехугольные призмы предположительного состава MnWO₄. Кристаллы, образованные после отжига при 850°С, — правильные шестиугольные призмы предположительного состава Na₂Mn₂Ti₆O₁₆. Результаты работы показывают, что, изменяя температуру окислительного отжига, можно управлять архитектурой и составом поверхности гетерогенных оксидных покрытий на титане.

Финансирование работы

Работа частично выполнена в рамках государственного задания ФГБУН Института химии ДВО РАН, тема № 265-2018-0001, и частично поддержана грантом Российского фонда фундамантальных исследований № 18-03-00418.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Килин Кирилл Николаевич, к.х.н., ORCID: https:// orcid.org/0000-0002-9013-4656

Руднев Владимир Сергеевич, д.х.н., ORCID: https:// orcid.org/0000-0002-1953-5617

Лукиянчук Ирина Викторовна, к.х.н., ORCID: https://orcid.org/0000-0003-1680-4882

Васильева Марина Сергеевна, д.х.н., доцент, ORCID: https://orcid.org/0000-0002-6716-1373

Кайдалова Таисия Александровна, к.х.н., ORCID: https://orcid.org/0000-0003-2249-9087

Список литературы

[1] Jiang B. L., Wang Y. M. Plasma electrolytic oxidation treatment of aluminium and titanium alloys // Surface

engineering of light alloys. Aluminium, magnesium and titanium alloys / Ed. Hanshan Dong. Woodhead Publ. Ltd, 2010. P. 110–154.

- [2] Kaluđerović M. R., Schreckenbach J. P., Graf H. L. Titanium dental implant surfaces obtained by anodic spark deposition — From the past to the future // Mater. Sci. Eng. C-Mater. Biol. Appl. 2016. V. 69. P. 1429– 1441. https://doi.org/10.1016/j.msec.2016.07.068
- [3] Jagminas A., Ragalevicius R., Mazeika K., Reklaitis J., Jasulaitiene V., Selskis A., Baltrunas D. A new strategy for fabrication Fe₂O₃/SiO₂ composite coatings on the Ti substrate // J. Solid State Electrochem. 2010. V. 14. N 2. P. 271–277. https://doi.org/10.1007/s10008-009-0820-7
- [4] Сахненко Н. Д., Ведь М. В., Майба М. В. Конверсионные и композиционные покрытия на сплавах титана: монография. Нац. техн. ун-т «Харьков. политехн. ин-т». Харьков: НТУ ХПИ, 2015. С. 142– 145.
- [5] El Achhab M., Schierbaum K. Structure and hydrogen sensing properties of plasma electrochemically oxidized titanium foils // Procedia Eng. 2012. V. 47. P. 566–569. https://doi.org/10.1016/j.proeng.2012.09.210
- [6] Jiang Y. N., Liu B. D., Yang W. J., Yang L., Li S. J., Liu X. Y., Zhang X. L., Yang R., Jiang X. Crystalline (Ni_{1-x}CO_x)₅TiO₇ nanostructures grown in situ on a flexible metal substrate used towards efficient CO oxidation // Nanoscale. 2017. V. 9. N 32. P. 11713– 11719. https://doi.org/10.1039/c7nr02633a
- [7] Jiang Y. N., Liu B. D., Yang W. J., Yang B., Liu X. Y., Zhang X. L., Mohsin M.A., Jiang X. New strategy for the in situ synthesis of single-crystalline MnWO₄/TiO₂ photocatalysts for efficient and cyclic photodegradation

of organic pollutants // Cryst. Eng. Comm. 2016. V. 18. N 10. P. 1832–1841.

https://doi.org/10.1039/c5ce02445e

- [8] Лукиянчук И. В., Руднев В. С., Устинов А. Ю., Морозова В. П., Адигамова М. В., Тырина Л. М., Черных И. В. Бифункциональные Fe-содержащие покрытия, сформированные на сплаве алюминия плазменно-электролитическим оксидированием // ЖПХ. 2012. Т. 85. № 11. С. 1776–1780 [Lukiyanchuk I. V., Rudnev V. S., Ustinov A. Yu., Morozova V. P., Adigamova M. V., Tyrina L. M., Chernykh I. V. Bifunctional Fe-containing coatings formed on aluminum by plasma-electrolytic oxidation // Russ. J. Appl. Chem. 2012. V. 85. N 11. P. 1686–1690. https://doi.org/10.1134/S1070427212110092].
- [9] Руднев В. С., Малышев И. В., Лукиянчук И. В., Курявый В. Г. Состав, строение поверхности и температурное поведение композиций $ZrO_2 + TiO_2/Ti$ и $ZrO_2 + CeO_x + TiO_2/Ti$, сформированных методом плазменно-электролитического оксидирования // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 4. С. 391–397 [Rudnev V. S., Malyshev I. V., Lukiyanchuk I. V., Kuryavyi V. G. Composition, surface structure and thermal behavior of $ZrO_2 + TiO_2/Ti$ and $ZrO_2 + CeO_x + TiO_2/Ti$ composites formed by plasma-electrolytic oxidation // Prot. Met. Phys. Chem. Surf. 2012. V. 48. N 4. P. 455– 461. https://doi.org/10.1134/S207020511203015X].
- [10] Lassner E., Schubert W. D. Tungsten Properties, chemistry, technology of the element, alloys, and chemical compounds. Springer-Verlag New York Inc., 2012. P. 86.